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Abstract
In this paper we obtain a complete classification of all possible non-trivial
similarity solutions of the integro–differential fragmentation equation with
continuous mass loss rate. These solutions include the effects of both
continuous and discrete mass loss rates. The similarity solutions are compared
with the solutions found earlier. The comparison shows that some previous
solutions are obtained as special cases from our solutions. The results reported
here provide further evidence of the usefulness of the Lie group method
for obtaining similarity solutions for either differential or integro–differential
equations.

PACS numbers: 02.60.Nm, 82.30.Lp, 02.20.−a

1. Introduction

During the last two decades, the fragmentation equation has attracted significant attention from
a diverse group of scientists such as physicists and mathematicians [1–4]. This is because
the fragmentation equation not only arises from realistic physical phenomena, but also can be
widely applied to many physically significant problems including reacting polymers, clustering
of colloidal particles, astrophysics and birth–death processes [5–7].

Consider the fragmentation equation with continuous mass loss case

∂n(x̃, t)

∂t
= −a(x̃)n(x̃, t) +

∫ ∞

x̃

a(y)K(x̃, y)n(y, t) dy +
∂

∂x̃
[c(x̃)n(x̃, t)]. (1)

This equation describes the evolution of the particle mass distribution n(x̃, t) for a system
of particles undergoing fragmentation with continuous mass loss rate c(x̃) where a(x̃) is the
fragmentation rate, and K(x̃, y) is the distribution of daughter particles with mass x̃ spawned
by the fragmentation of a parent of mass y.
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Since continuous mass loss involves no collisions between particles and depends only on
the interaction between each particle and its environment, the fragmentation equation (1) is a
linear integro–differential equation.

Different choices of the coefficients in equation (1) will lead to different homogeneous
fragmentation models. According to the work of Edwards et al [8], Cai et al [9] and Baumann
et al [10], we consider the following power-law dependence:

a(x̃) = x̃α K(x̃, y) = 2ϕx̃υy−(υ+1) c(x̃) = εx̃−γ ε � 0. (2)

Via the transformation

u(x, t) = x̃−υn(x̃, t) x = x̃ϕ (3)

the partial integro–differential fragmentation (PIDF) equation (1) can be written in the form

∂u

∂t
+ (xn+1 − axm)u − bxm+1 ∂u

∂x
− 2

∫ ∞

x

x ′nu(x ′, t) dx ′ = 0 (4)

where

n = α

ϕ
− 1 m = γ − 1

ϕ
a = b[1 + m + (υ + λ(υ + 2))/2ϕ] b = εϕ. (5)

We have to mention that in the case of the absence of mass loss (sometimes called discrete
mass loss), the coefficient c(x) equals zero and then equations (2) and (5) show that ε = b =
a = 0.

Hence, the fragmentation equation (1) is reduced to that considered by Baumann et al
[10] in their work.

Differentiating the above equation (4) with respect to x, the integro–differential
equation (4) is transformed to the following partial differential equation with variable
coefficients:

∂2u

∂t∂x
+ A

∂2u

∂x2
+ β

∂u

∂x
+ Cu = 0 (6)

where

A = −bxm+1

β = −bxm + xn+1 (7)

C = (n + 3)xn + ambxm−1.

Various methods for seeking explicit solutions to the fragmentation equation have been
proposed among which are the Laplace transformation [11], moment expansion [12] and
similarity method [10, 13]. In a work on similarity solution, Baumann et al [10] discussed the
case of discrete mass loss (ε = 0) and obtained similarity solutions of the partial differential
equation (6) instead of the PIDF equation (1).

In the case of continuous loss of mass (ε �= 0), Saied and El-Wakil [13] extended the
analysis of Baumann et al [10] and classified the similarity solutions of the partial differential
fragmentation equation (6) in terms of Lie group parameters. In this work we aim to generalize
the analysis of Saied and El-Wakil [13] and Baumann et al [10], by applying the Lie method
to the integro–differential equation (4) rather than the corresponding differential equation (6).

The paper is arranged as follows. In section 2, we introduce Lie analysis for integro–
differential equations. In section 3, we derive the similarity reductions. Section 4 is devoted
to finding different classes of similarity solutions. A discussion and concluding remarks are
presented in section 5.



On the solution of the integro–differential fragmentation equation with continuous mass loss 8313

2. Application of the Lie method

In this section, the Lie method [14, 15] will be applied to find the similarity solutions and
similarity reductions of the PIDF equation (4). Now we consider the one-parameter (ε) group
of infinitesimal transformations

x∗ = x + εξ(x, t, u) + O(ε2)

t∗ = t + εT (x, t, u) + O(ε2)

u∗ = u + εη(x, t, u) + O(ε2)

u∗
x∗ = ux + ε[ηx] + O(ε2) (8)

u∗
t∗ = ut + ε[ηt ] + O(ε2)∫ ∞

x∗
x ′nu∗ dx ′ =

∫ ∞

x

x ′nu dx ′ + ε[�I ]

where the infinitesimals [ηx] and [ηt] are given by

[ηx] = ηx + (ηu − ξx)ux − Txut − ξuu
2
x − Tuuxut

(9)
[ηt ] = ηt + (ηu − Tt )ut − ξtux − Tuu

2
t − ξuuxut .

In addition, it can be proved that

[�I ] = −ξxnu

∫ ∞

x

[
nξx ′n−1u + x ′nη + x ′nu

[
∂ξ

∂x ′ +
∂ξ

∂u

∂u

∂x ′

]]
dx ′. (10)

If a similarity reduction of equation (4) is to be found by the Lie method, it is necessary to
determine the functions η(x, t, u), T (x, t, u) and ξ (x, t, u) that leave PIDF equation (4) invariant
under the group of transformations (8). The infinitesimal criteria for the invariance of (4)
under the group (8) are given by

χH = λ(x, t, u)H (11)

where

χ = ξ
∂

∂x
+ T

∂

∂t
+ η

∂

∂u
+ [ηx]

∂

∂ux

+ [ηt ]
∂

∂ut

+ [�I ]
∂

∂
∫

x ′nu dx ′ . (12)

H

(
x, t, u, ux, ut +

∫ ∞

x

xnu dx

)
= ut + (xn+1 − axm)u − bxm+1ux −

∫ ∞

x

x ′nu dx ′ (13)

where λ(x, t, u) is an arbitrary function to be determined. Therefore, substituting (12) and (13)
into (11), we obtain the equation

[ηt ] + (xn+1 − axm)η + ξ((n + 1)xn − amxm−1)u − b(m + 1)ξxmux

− bxm+1[ηx] − 2
∫ ∞

x

(
nξx ′n−1u + x ′nη + x ′nu

(
∂ξ

∂x
+

∂ξ

∂u

∂u

∂x ′

))
dx ′

= λ(x, t, u)

[
ut + (xn+1 − axm)u − bxm+1ux − 2

∫ ∞

x

x ′nu dx ′
]

. (14)

Now we substitute expressions (9) and (10) into equation (14). Setting the coefficients with
like derivatives and integral to zero, we obtain the determining equations for T, ξ , η and λ.
These equations are
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ξu = Tu = Tx = 0

ηu − Tt = λ(x, t, u)∫ ∞

x

(nξx ′n−1u + xnη + x ′nuξx) dx ′ = λ(x, t, u)

∫ ∞

x

x ′nu dx ′ (15)

ξt + b(m + 1)ξxm + bxm+1(ηu − ξx) = λbxm+1

ηt + (xn+1 − axm)η + ξ((n + 1)xn − amxm−1)u − bxm+1ηx = λ(xn+1 − axm)u.

Solving the whole system of the determining equation (15) in the case m = n + 1 yields, after
lengthy manipulations, the following expressions for T, ξ , η:

T = a0

2
t2 + a1t + a2

ξ = − 1

m
(a0t + a1)x + f0x

−n (16)

η = (mf0(a − 1)t + a3)u

with four arbitrary constants a0, a1, a2, a3 since

a0 = 2f0m
2b. (17)

It is to be noted that the parameter a0 was completely missed in the work of Saied and El-
Wakil and consequently the corresponding similarity solution and reduction were also missed.
Knowledge of the infinitesimal elements T, ξ and η given in (16) enables us to construct four
operators (for details see Bluman and Kumie [14] and Olver [15]),

χ1 = ∂

∂t

χ2 = t
∂

∂t
− 1

m
x

∂

∂x
(18)

χ3 = t2

2

∂

∂t
+

(
− 1

m
tx +

1

2m2b
x1−m

)
∂

∂x
+

a − 1

2mb
tu

∂

∂u

χ4 = u
∂

∂u
.

It is obvious that the vector fields χ2 and χ4 contain the scaling properties of the fragmentation
equation (4) and χ1 represents a translation in time.

The commutation relations of the four vector fields χ1, χ2, χ3 and χ4 are shown as
follows:

[χ1, χ2] = χ1 [χ1, χ3] = χ2 [χ2, χ3] = χ3 (19)

and the rest equal zero.
We have to note that in the case of m �= n + 1, the determining equations (15) show

that the fragmentation (4) admits the trivial group ξ = 0, T = a2, η = a3u. This means
that the fragmentation equation (4) is invariant under time translation and possesses a scaling
invariance in the dependent variable u.

In the absence of the continuous mass loss where ε = a = b = 0 and equation (17) implies
a0 = 0, the group (16) becomes

T = a1t + a2 ξ = − 1

m
a1x + f0x

1−m η = (−mf0t + a3)u. (20)
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The corresponding vector fields in the case ε = 0 are given by

χ1 = ∂

∂t

χ2 = u
∂

∂u

χ3 = t
∂

∂t
− 1

m
x

∂

∂x

χ4 = 1

m
x1−m ∂

∂x
− tu

∂

∂u
. (21)

The vector fields χ2 and χ3 contain the properties of the scaling invariant nature of the
fragmentation equation while χ1 represents time translation invariance.

The commutation relations of the four vector fields χ1, χ2, χ3 and χ4 are shown as follows:

[χ1, χ3] = χ1 [χ1, χ4] = χ2 [χ3, χ4] = χ4 (22)

whereas the rest equal zero.

3. Similarity reductions

In order to obtain the similarity reductions for fragmentation equation (4), we have to solve
first the characteristic equations

dt

T
= dx

ξ
= du

η
(23)

associated with the vector fields χ1, χ2, χ3 and χ4 and their combinations. In general,
the solution of (23) will involve two arbitrary constants, of which one constant plays the
role of similarity variable s and the other, say F(s), plays the role of similarity solution.
Substituting the variables s and F(s) into fragmentation equation (4) results in an ordinary
integro–differential equation.

Because a linear combination of the four vector fields determines the general symmetry
of equation (4), we can use a combination of the vector fields to classify the types of solutions.
However, the similarity forms and reductions of the fragmentation equation (4) in the absence
of mass loss, i.e. ε = 0, are listed in table 1 while the reduction corresponding to the case of
mass loss, i.e. ε �= 0, is tabulated in table 2.

4. Similarity solutions

In this section we shall discuss the similarity solution of the fragmentation equation (4) in two
different cases: (i) ε = 0 and (ii) ε �= 0.

(i) Case ε = 0. In spite of scaling, invariant solutions of the fragmentation equation hold
great interest because of evidence [11, 17] that large classes of general solutions tend to
scaling solutions after initial transients decay away. Nevertheless the nature of solutions in
the non-scaling regime deserves to be obtained explicitly. Therefore, we focus our attention
on obtaining the general similarity solution where the other classes listed in table 1 can be
obtained as particular cases.

As shown in table 1, the general similarity solution is

u = F(s)(a1t + a2)
k exp

[
−mf0

a1
t

]
(24)
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Table 1. Similarity forms and reduced fragmentation equation in the case ε = 0.

Case Similarity forms Reduced fragmentation equation

1 u = F(s)(a1t + a2)
k exp

[
− mf0

a1
t
]

a1s
dF
ds

+
(
a1m − m

a1
s
)
F(s) + 2

a1

∫ ∞
s

F (s′) ds′ = 0

s = (a1t + a2)(mf0 − a1x
m)

m = 1
a2

1

(a2a1 + a1mf0)

2 u = F(s)(a1t + a2)
a2/a1 a1

m
s dF

ds
+ (a3 + sm)F (s) − 2

∫ ∞
s

s′m−1F(s′) ds′ = 0
s = x(a1t + a2)

1/m

3 u = F(s) exp
[

a3
mf0

− s
]
xm m

(
a3

mf0
− s

)
dF
ds

+ 2F(s) = 0

s = t

4 u = F(s) e
1
a2

(a3t− mf0
2

t2) mf0
a2

dF
ds

+
(

a3
a2

− s
)
F(s) + 2

m

∫ ∞
s

F (s′) ds′ = 0

s = mf0
a2

t − xm

5 u = F(s) smF (s) − 2
∫ ∞
s

s′m−1F(s′) ds′ = 0
s = x

6 u = F(s) e
a3
a2 t

(
a3
a2

+ sm
)
F(s) − 2

∫ ∞
s

s′m−1F(s′) ds′ = 0

s = x

Table 2. Similarity forms and reduced fragmentation equation in the case ε �= 0.

Case Similarity forms Reduced fragmentation equation

χ1 s = x (1 − a)smF(s) − bsm+1 dF(s)
ds

− 2
∫ ∞
s

s′m−1F(s′) ds′ = 0
u = F(s)

χ2 s = txm s dF
ds

+ (1 − a)sF (s) − mbs2 dF
ds

− 2
m

∫ ∞
s

F (s′) ds′ = 0
u = F(S)

χ3 s = t2xm − 1
mb

t (1 − a) − sF (s) − 1
mb

s2 dF
ds

− 2
M

∫ ∞
s

F (s′) ds′ = 0

u = t
a−1
mb F (S)

χ2 + γχ4 s = txm (γ + (1 − a)s)F (s) − s(1 − mbs) dF
ds

− 2
M

∫ ∞
s

F (s′) ds′ = 0
u = tγ F (s)

χ1 − γχ4 s = x (−γ + (1 − a)sm)F (s) − bsm+1 dF
ds

− 2
∫ ∞
s

s′m−1F(s′) ds′ = 0
u = F(s) exp[−γ t]

χ1 + χ2 s =
(

a0
2 t2 + a1t + a2

)
xm − mf0t (s2 − A1s + A2)

dF
ds

− (A3s + A4)F (s) + A5
∫ ∞
s

F (s′) ds′ = 0

+ χ3 + χ4 u = F(s) exp
∫

A(t)
B(t)

dt A1 = a1
bm

, A2 = a0

2b2m2 , A3 = a3
bm

,A4 = a3
mb

,A5 = 1
bm2

A(t) = mf0(a − 1)t + a3

B(t) = a0
2 t2 + a1t + a2

where

s = (a1t + a2)(mf0 − a1x
m) k = 1

a2
1

(a1a3 + a2mf0). (25)

Substitution of this similarity solution into (4) results in the following reduced fragmentation
equation:

a1s
dF

ds
+

(
a1k − m

a1
s

)
F(s) +

2

a1

∫ ∞

s

F (s ′) ds ′ = 0. (26)

The use of the substitution

g(s) =
∫ ∞

s

F (s ′) ds ′ (27)
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transforms equation (26) into the following second order differential equation with variable
coefficients:

s
d2g

ds2
+

(
k − m

a2
1

s

)
dg

ds
− 2

a2
1

g(s) = 0. (28)

Rescaling s by ζ = m

a2
1
s, equation (28) can be reduced to the standard form of Kummer’s

equation

ζ
d2g

dζ 2
+ (k − ζ )

dg

dζ
− 2

m
g(ζ ) = 0. (29)

The complete solution of (29) can be expressed in terms of the confluent hypergeometric
function 1F1(a, b, ζ ) which consists of a convergent series for ζ . However, the solution is
(see for instance Murphy [16])

g(ζ ) = A1F1

(
2

m
, k, ζ

)
+ Bζ 1−k

1F1

(
2

m
− k + 1, 2 − k, ζ

)
(30)

where 1F1(a, b, ζ ) is given by the series

1F1(a, b, ζ ) = 1 +
∞∑

r=0

(a)rζ
r

(b)rr
(31)

and (a)r, (b)r are Pochhammer’s symbols defined by

(a)r = �(a + r)

�(a)
(b)r = �(b + r)

�(b)

whereas A and B are two arbitrary constants. Inverting the transformations used previously,
one can write the most general similarity solution of the integro-differential fragmentation
equation with no mass loss. However, the solution is

u(x, t) =
(

A1F1

(
1 +

2

m
, k + 1,

m

a2
1

(a1t + a2)

(
f0 − a1

m
xm

))

+ B
(
(a1t + a2)

(
f0 − a1

m
xm

))−k

× 1F1

(
2

m
− k, 1 − k,

m

a2
1

(a1t + a2)

(
f0 − a1

m
xm

)))

×(a1t + a2)
k exp

[
−

[
mf0

a1
t

]]
. (32)

In the particular case a2 = f 0 = 0, the general similarity solution (24) reduces to

s = txm u = t kF (s). (33)

Inserting (33) into fragmentation equation (4), one obtains the reduced integro–differential
equation

s
dF(s)

ds
+ (1 + s)F − 2

m

∫ ∞

s

F (s ′) ds ′ = 0. (34)

Differentiating this equation, one obtains the following second order differential equation:

s
d2F

ds2
+ (1 + k + s)

dF

ds
+

(
1 +

2

m

)
F = 0.

Scaling the similarity variable s by s = −z, the above equation can be transformed to Kummer’s
equation

z
d2F

dz2
+ (1 + k − z)

dF

dz
−

(
1 +

2

m

)
F = 0. (35)



8318 A Elhanbaly

In terms of the original variables, the fragmentation equation with no mass loss admits the
following solution:

u(x, t) = t k
(

A1F1

(
1 +

2

m
, k + 1,−txm

)
+ B(txm)−k

1F1

(
2

m
− k, 1 − k,−txm

))
(36)

which is exactly the same as that obtained previously by Baumann et al [10]. In order to obtain
the Kummer-type solution which was discussed by McGrady and Ziff [17] and Corngold and
Williams [4], we have to impose a further restriction on the similarity solution (33). By setting
k = 1 in (33) and (36), the solution (36) goes back to that obtained by these authors,

u(x, t) = t

(
A1F1

(
1 +

2

m
, 2,−txm

)
+ Bt−1x−m

1F1

(
2

m
− 1, 0,−txm

))
. (37)

Also, in another paper [20] Ziff generalized the discrete fragmentation equation by introducing
a new class of fragmentation model, characterized by

a(x̃) = x̃α yk(x̃, y) = βµ

(
x̃

y

)µ−2

+ (1 − β)δ

(
x̃

y

)δ−2

(38)

with four adjustable parameters α, β, µ and δ. This class of fragmentation includes, as a
special case, our model if β = 1 and η = 2 − ν = 2ϕ. Without performing Lie analysis, Ziff
obtained only a scaling solution for the fragmentation model (38) and he made a special ansatz
for the solution to obtain Kummer’s solution. His solution is equivalent to (37) in the case
β = 1 and η = 2 − ν = 2ϕ. Our procedure delivers systematically, in addition to the scaling
solution, other classes of similarity solutions. These types of solutions follow from the two
cases 1 and 4 that are listed in table 1. In future, using the fragmentation model of Ziff
(38) we shall apply Lie’s technique to find and classify all possible similarity solutions of the
fragmentation equation.

(ii) Case ε �= 0. Here we extend the above analysis to include the effect of fragmentation mass
loss. Based on using the Lie group method, we distinguish six classes of similarity solutions.

Class χ1. This class corresponds to time translation invariance. As shown in table 2, the
similarity variable s and similarity solution F(s) are given by

s = x u = F(s). (39)

Substitution of the similarity solution (39) into (4) results in the first order ordinary integro–
differential equation

(1 − a)smF (s) − bsm+1 dF(s)

ds
− 2

∫ ∞

s

s ′m−1F(s ′) ds ′ = 0. (40)

Via the substitution

g(s) =
∫ ∞

s

s ′m−1F(s ′) ds ′ (41)

equation (40) can be transformed into the second order differential equation

bs2 d2g

ds2
− (1 − a − b(1 − m))s

dg

ds
− 2g = 0 (42)

which has the following solution

g = c1s
r1 + c2s

r2 (43)

where c1 and c2 are constants, and r1 and r2 are the roots of the quadratic equation

br2 − r(1 − a − b(1 − m)) − 2 = 0. (44)
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Making use of the substitution (41), one gets

F(s) = −s1−m dg

ds
. (45)

Thus, the solution in terms of the original coordinates reads

u = −x1−m(c1x
r1−1 + c2x

r2−1). (46)

It is worth noting that in the case of discrete loss of mass (i.e. ε = a = b = 0), equation (44)
reduces to r = −2 and then the solution (46) goes back to that obtained previously by Baumann
et al [10],

u = c1x
−(m+2). (47)

Now, we conclude that the obtained stationary solution (47) is thus the similarity solution that
corresponds to time translation and scaling invariance of the independent variable u.

Class χ2. In this case the similarity variable s and similarity solution F(s) are given by

s = txm u = F(s). (48)

Inserting (48) into fragmentation equation (4), one obtains the reduced integro–differential
equation

s
dF

ds
+ (1 − a)sF (s) − mbs2 df

ds
− 2

m

∫ ∞

s

F (s ′) ds ′ = 0. (49)

Differentiating equation (49), one obtains the following second order differential equation

s(1 − mbs)
d2F

ds2
+ (1 + (1 − a − 2mb)s)

dF

ds
+

(
1 − a +

2

m

)
F = 0. (50)

The solution of this equation can be expressed in terms of hypergeometric function 2F1(· · ·)
and MeijerG function [18]. However, the solution in terms of original coordinates is

u(x, t) = C1 2F1[−k4(k1 + mk2), k4(−k1 + mk2), 1, bmxmt]

+ C2MeijeG[{{}, {mk4(k3 + k2) − mk4(−k3 + k2)}}, {{0, 0}, {}}, bmxmt] (51)

where

k1 = m(1 − a − b) k2 = [−4b(−2 + (a − 1)m) + (a − 1 + bm)2]1/2

k3 = 1 − a + bm k4 = 1
2bm2 .

(52)

In the absence of mass loss where a = b = ε = 0, the reduced equation (50) becomes

s
d2F

ds2
+ (1 + s)

dF

ds
+

(
1 +

2

m

)
F = 0

which admits the solution

u(x, t) = t

(
A1F1

(
1 +

2

m
, 2,−txm

)
+ Bt−1x−m

1F1

(
2

m
− 1, 0,−txm

))
(53)

obtained previously by McGrady and Ziff [17] and Corngold and Williams [4]. This leads
one to the conclusion that the solution obtained by these authors is thus the similarity solution
associated with the subgroup χ2.

Class χ3. The similarity variable s and similarity solution F(s) in this case are given by

s = t2xm − 1

mb
t u = t

a−1
mb F (s). (54)
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Substituting (54) into (4), F(s) must satisfy the ordinary integro–differential equation

(1 − a)sF (s) − 1

mb
s2 df

ds
− 2

m

∫ ∞

s

F (s ′) ds ′ = 0. (55)

Introducing the transformation

g(s) =
∫ ∞

s

F (s ′) ds ′ (56)

equation (55) becomes

s2 d2g

ds2
− mb(1 − a)s

dg

ds
− 2bg(s) = 0. (57)

This equation admits the general solution

g = c1s
r1 + c2s

r2 (58)

where c1 and c2 are constants, and r1 and r2 are the roots of the quadratic equation

r2 − (mb − mba + 1)r − 2b = 0. (59)

By means of (56), F(s) follows

F(s) = c1s
r1−1 + c2s

r2−1. (60)

In terms of the original coordinates, the similarity solution is as follows:

u = t
a−1
mb

[
c1

(
t2xm − t

mb

)r1−1

+ c2

(
t2xm − t

mb

)r2−1
]

. (61)

It is to be noted that this type of solution (61) cannot be constructed from the work of Saied
and El-Wakil [13] because the symmetry group of χ3 was completely missed in their results.

Class χ2 + γχ4. In this case we consider the following linear combination χ2 + γχ4. The
corresponding similarity variable s and similarity solution are

s = txm u = tγ F (s). (62)

The reduced equation is found to be

(γ + (1 − a)s)F (s) + s(1 − mbs)
dF

ds
− 2

m

∫ ∞

s

F (s ′) ds ′. (63)

Using the substitution

g(s) =
∫ ∞

s

F (s ′) ds ′ (64)

equation (63) is transformed into the ordinary differential equation

s(1 − mbs)
d2g

ds2
+ (γ + (1 − a)s)

dg

ds
+

2

m
g(s) = 0. (65)

Solving equation (65) and inverting the transformations used previously, one can write the
similarity solution of the fragmentation equation in terms of the original coordinates in the
following form:

u(x, t) = tγ
(

c1 2F1

(
D4 − D5,−1

2
− D2

2bm
+ D5,D1, bmtxm

)

+ c2(tx
m)1−D1

2F1(D6 − D5,D6 + D5, 2 − D1, bmtxm)

)
(66)
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where c1 and c2 are constants and

D1 = 1 + γ D2 = 1 − a − 2mb D3 = 1 − a +
2

m (67)

D4 = −1

2
− D2

2bm
D5 = 4D3bm + (D2 − bm)1/2

2bm
D6 = 1

2
− D1 − D2

2bm
.

Class χ1 − γχ4. The similarity variable s and similarity solution are

s = x u = e−γ tF (s) (68)

where the function F(s) must satisfy the equation

(−γ + (1 − a)sm)F (s) − bsm+1 df

ds
− 2

∫ ∞

s

s ′m+1F(s)′ ds ′ = 0. (69)

By the substitution

g(s) =
∫ ∞

s

s ′m−1F(s ′) ds ′ (70)

the reduced equation (69) becomes

bs2 d2g

ds2
+ s(γ s−m − (1 − a − b(1 − m)))

dg

ds
− 2g(s) = 0. (71)

Solving this equation in connection with (70) and (68), the similarity solution in the original
coordinates has the following form:

u(x, t) = x−m+1 d

dx

[
c1x

f4
1F1

(
f3 − f2

m
, 1 − 2f2

m
,
γ x−m

bm

)

+ c2x
f5

1F1

(
f3 +

f2

m
, 1 +

2f2

m
,
γ x−m

bm

)]
e−γ t (72)

where

f1 = a − 1 − bm

2b
f2 = (4b + (1 − a + bm)2)1/2

2b (73)
f3 = −1

2
− 1

2bm
+

a

2bm
f4 = f1 − f2 f5 = f1 + f2.

In the limiting case ε = a = b = 0, equation (71) becomes

s(γ s−m − 1)
dg

ds
− 2g(s) = 0. (74)

Using the transformation z = s−m, equation (74) becomes

−m(γ z2 − z)
dg

dz
− 2g(z) = 0. (75)

This equation admits the solution

g = g0(γ − z−1)−
2
m . (76)

By means of the substitution (64), the function F(s) in terms of s follows

F = F0(γ − sm)−
2
m

−1. (77)

Inverting the transformation used, above, the similarity solution of the fragmentation equation
with no mass loss in terms of the original coordinates is

u = u0 e−γ t (γ − xm)−
2
m

−1. (78)

This solution goes back to the time independent solution (47) if γ = 0.
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Class χ1 + χ2 + χ3 + χ4. This class yields the most general similarity solution of the
fragmentation equation (4) with continuous mass loss. As shown in table 2, the general
similarity solution and similarity variable are

u = F(s) exp
∫ t

t0

A(t ′)
B(t ′)

dt ′ (79)

where

s =
(

a0

2
t2 + a1t + a2

)
xm − mf0t

A(t) = mf0(a − 1)t + a3 (80)

B(t) = a0

2
t2 + a1t + a2.

Inserting equations (79) and (80) into (4) yields, after lengthy manipulations, the following
reduced fragmentation equation:

(s(s − A1) + A2)
d2g

ds2
− (A3s + A4)

dg

ds
− A5g(s) = 0 (81)

where the function g(s) is related to F(s) via

g(s) =
∫ ∞

s

F (s ′) ds ′ (82)

and Ai (i = 1–5) are given by

A1 = a1

bm
A2 = a0

2b2m2
A3 = a3

bm
A4 = a3

bm
A5 = 1

bm2
. (83)

Solving equation (81) in connection with (82), (79) and (80) yields the general similarity
solution of the fragmentation equation with continuous mass loss in terms of the original
coordinates u, x, t in the following form:

u(x, t) =
{
c1 2F1

[
E1 − E2, E1 + E2, E3,

B(t)xm − mf0t

A1

]
+ c2(B(t)xm − mf0)

−A4/A1

× 2F1

[
E4 − E2, E4 + E2, E5,

B(t)xm − mf0t

A1

]}
exp

∫ t

t0

A(t ′)
B(t ′)

dt ′ (84)

where

E1 = 1

2
− A3

2
E2 = 1

2

√
1 + 2A3 + A2

3 + 4A5 E3 = 1 + −A4

A1

E4 = 1

2
− A3

2
− A4

A1
E5 = 1 − A4

A1
.

5. Conclusions

In this paper we discuss a new application of the classical method of Lie group theory to the
integro–differential fragmentation equation with continuous mass loss. With the help of the Lie
method, the partial integro–differential fragmentation equation is reduced to ordinary integro–
differential equations which are solvable explicitly. We obtain a complete classification of all
possible non-trivial similarity solutions. These solutions include the effect of both continuous
and discrete mass loss and are compared with solutions found earlier [4, 10, 13, 17]. With
our calculations based on using Lie group theory for integro–differential equations such as
fragmentation equation, we have demonstrated that some of the solutions found previously
can be obtained as particular classes from our solutions. Therefore, one may conclude that
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Lie’s similarity method represents one of the most powerful analytical techniques for solving
either differential or integro–differential equations. Another way of finding new classes of
similarity solution for the fragmentation equation is the non-classical Lie method introduced
by Bluman and Cole [19]. In a future work, we shall deal with such a technique for solving
the fragmentation with the model introduced by (38).
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